Estimating General Equilibrium Spillovers of Large-Scale Shocks

Summary Slides
Kilian Huber
General Equilibrium Spillovers

• Researchers often want to quantify GE spillovers: how shocks to some firms/households affect others
 • evaluate GE channels in models
 • convert estimates to other levels of aggregation
General Equilibrium Spillovers

- Researchers often want to quantify GE spillovers: how shocks to some firms/households affect others
 - evaluate GE channels in models
 - convert estimates to other levels of aggregation

- E.g.: We know effect of regional house prices on employment. To calibrate models, we need direct effect (net of spillovers).
General Equilibrium Spillovers

- Researchers often want to quantify GE spillovers: how shocks to some firms/households affect others
 - evaluate GE channels in models
 - convert estimates to other levels of aggregation

- E.g.: We know effect of regional house prices on employment. To calibrate models, we need direct effect (net of spillovers).

- E.g.: We know direct effect of credit cut on firms relative to other firms. Regional policymaker wants regional effect.
General Equilibrium Spillovers

- Researchers often want to quantify GE spillovers: how shocks to some firms/households affect others
 - evaluate GE channels in models
 - convert estimates to other levels of aggregation

- E.g.: We know effect of regional house prices on employment. To calibrate models, we need direct effect (net of spillovers).

- E.g.: We know direct effect of credit cut on firms relative to other firms. Regional policymaker wants regional effect.

- Traditional approach: write down full GE model
 Browning et al. 1999; Acemoglu 2010; Nakamura and Steinsson 2018
General Equilibrium Spillovers

- Researchers often want to quantify GE spillovers: how shocks to some firms/households affect others
 - evaluate GE channels in models
 - convert estimates to other levels of aggregation

- E.g.: We know effect of regional house prices on employment. To calibrate models, we need direct effect (net of spillovers).

- E.g.: We know direct effect of credit cut on firms relative to other firms. Regional policymaker wants regional effect.

- Traditional approach: write down full GE model
 Browning et al. 1999; Acemoglu 2010; Nakamura and Steinsson 2018

- Alternative: directly estimate spillovers using multi-layered variation
Related Literature

- Few studies in macro and finance directly estimate spillovers
 Dupor and McCrory 2018; Huber 2018; Bernstein et al. 2019; Auerbach et al. 2020; Gathmann et al. 2020; Helm 2020; Verner and Gyöngyösi 2020; Conley et al. 2021; Berg et al. 2021; Mian et al. 2022

- Methods tailored to labor and RCTs (“closed economies”, Egger et al.)
 Ammermueller and Pischke 2009; Epple and Romano 2011; Sacerdote 2011; Angrist 2014; List et al. 2019
Related Literature

- Few studies in macro and finance directly estimate spillovers (Dupor and McCrory 2018; Huber 2018; Bernstein et al. 2019; Auerbach et al. 2020; Gathmann et al. 2020; Helm 2020; Verner and Gyöngyösi 2020; Conley et al. 2021; Berg et al. 2021; Mian et al. 2022)

- Methods tailored to labor and RCTs (“closed economies”, Egger et al.) (Ammermueller and Pischke 2009; Epple and Romano 2011; Sacerdote 2011; Angrist 2014; List et al. 2019)

- This paper: framework and advice tailored to macro and finance
 - multiple spillover types
 - nonlinearities
 - mismeasurement (Ammermueller and Pischke 2009; Angrist 2014)
 - policy multipliers
1. Conceptual framework for estimating spillovers
This Paper

1. Conceptual framework for estimating spillovers

2. Mechanical bias due to multiple spillovers
This Paper

1. Conceptual framework for estimating spillovers

2. Mechanical bias due to multiple spillovers

3. Mechanical bias due to mismeasurement
This Paper

1. Conceptual framework for estimating spillovers
2. Mechanical bias due to multiple spillovers
3. Mechanical bias due to mismeasurement
4. Interpretation and policy multipliers
This Paper

1. Conceptual framework for estimating spillovers
2. Mechanical bias due to multiple spillovers
3. Mechanical bias due to mismeasurement
4. Interpretation and policy multipliers
5. Practical advice
Setup

• Identify a research question and shock.

• Define types of spillovers to be estimated, e.g., across firms/households in
 • same region
 • same industry
 • same lender
 • same country ...
Setup

- Identify a research question and shock.

- Define types of spillovers to be estimated, e.g., across firms/households in
 - same region
 - same industry
 - same lender
 - same country ...

- Assign all firms/households to distinct groups.

- Assume shock is exogenous to both individual firms’/households’ and groups’ outcomes.
Setup

- Identify a research question and shock.

- Define types of spillovers to be estimated, e.g., across firms/households in
 - same region
 - same industry
 - same lender
 - same country ...

- Assign all firms/households to distinct groups.

- Assume shock is exogenous to both individual firms’/households’ and groups’ outcomes.

- Application: effect of credit cut on firms, both directly affected firms and unaffected firms in same region and product market.
Framework

- Linear model:

\[y_i = \beta x_i + \sum_{j \neq i, \text{reg.}}^{} \gamma^j x_j + \sum_{k \neq i, \text{ind.}}^{} \lambda^k x_k + \alpha + \epsilon_i \]
Framework

- Linear model:

\[y_i = \beta x_i + \sum_{j \neq i, \text{reg.}} \gamma^j x_j + \sum_{k \neq i, \text{ind.}} \lambda^k x_k + \alpha + \epsilon_i \]

- \(y_i \) = outcome (firm growth)
Framework

- Linear model:

 \[y_i = \beta x_i + \sum_{j \neq i, \text{reg.}} \gamma_j x_j + \sum_{k \neq i, \text{ind.}} \lambda_k x_k + \alpha + \epsilon_i \]

- \(y_i \) = outcome (firm growth)
- \(x_i \) = indicator for direct treatment of \(i \) (firm has crisis bank)
Framework

- Linear model:

\[y_i = \beta x_i + \sum_{j \neq i, \text{reg.}} \gamma^j x_j + \sum_{k \neq i, \text{ind.}} \lambda^k x_k + \alpha + \epsilon_i \]

- \(y_i \) = outcome (firm growth)
- \(x_i \) = indicator for direct treatment of \(i \) (firm has crisis bank)
- \(\beta \) = direct effect = change in \(y_i \) if \(i \) alone got treated
Framework

• Linear model:

\[y_i = \beta x_i + \sum_{j \neq i, \text{reg.}} \gamma^j x_j + \sum_{k \neq i, \text{ind.}} \lambda^k x_k + \alpha + \epsilon_i \]

• \(y_i \) = outcome (firm growth)

• \(x_i \) = indicator for direct treatment of \(i \) (firm has crisis bank)

• \(\beta \) = direct effect = change in \(y_i \) if \(i \) alone got treated

• \(\gamma^j \) = spillover = change in \(y_i \) due to treatment of firm \(j \) (same region)

• \(\lambda^k \) = spillover = change in \(y_i \) due to treatment of firm \(k \) (same industry)
Framework

- Assume spillovers in same region are homogeneous (or proportional to size).

\[y_i = \beta x_i + \gamma x_r(i) + \lambda x_s(i) + \alpha + \epsilon_i \]

- Spillover coefficient multiplies the "leave-out mean" (or size-weighted mean):
 \[x_r(i) = \sum_{j \neq i, r(j)=r(i)} x_j \frac{N_r(i) - 1}{N} \]

- Assume exogeneity, so biases not driven by endogeneity or "reflection problem":
 \[E(x_i \mid \epsilon_i) = 0 \]

- Assume systematic variation across groups:
 \[x_i = u_r(i) + u_s(i) + \nu_i \]
Framework

- Assume spillovers in same region are homogeneous (or proportional to size).
- Reduce dimensionality:

\[y_i = \beta x_i + \gamma \bar{x}_{r(i)} + \lambda \bar{x}_{s(i)} + \alpha + \epsilon_i \]
Framework

- Assume spillovers in same region are homogeneous (or proportional to size).
- Reduce dimensionality:

 \[y_i = \beta x_i + \gamma \bar{x}_{r(i)} + \lambda \bar{x}_{s(i)} + \alpha + \epsilon_i \]

- Spillover coefficient multiplies the “leave-out mean” (or size-weighted mean):

 \[
 \bar{x}_{r(i)} = \frac{\sum_{j \neq i, r(j)=r(i)} x_j}{N_{r(i)} - 1}
 \]
Framework

• Assume spillovers in same region are homogeneous (or proportional to size).

• Reduce dimensionality:

\[y_i = \beta x_i + \gamma \bar{x}_r(i) + \lambda \bar{x}_s(i) + \alpha + \epsilon_i \]

• Spillover coefficient multiplies the “leave-out mean” (or size-weighted mean):

\[\bar{x}_r(i) = \frac{\sum_{j \neq i, r(j) = r(i)} x_j}{N_r(i) - 1} \]

• Assume exogeneity, so biases not driven by endogeneity or “reflection problem”: \(E(x_i \epsilon_i) = 0 \)

• Assume systematic variation across groups:

\[x_i = u_r(i) + u_s(i) + \nu_i \]
Interpretation

- $\gamma = \text{estimated regional spillover, useful for models and aggregation}$

$$
\text{Average across regions: } y_r(i) = (\beta + \gamma) x_r(i) + \lambda x_s(i) r(i) + \alpha + \epsilon_r(i)
$$

- Total regional effect of average treatment
 $$
dy_r(i) dx_r(i) = \beta + \gamma
$$

- Direct effect of average treatment, assuming zero spillovers
 $$
dy_r(i) dx_r(i) \mid (\gamma = 0) = \beta
$$

More on how to calculate dollar multipliers etc. in paper.
Interpretation

- γ = estimated regional spillover, useful for models and aggregation

- Average across regions:

\[
\bar{y}_r^{(i)} = (\beta + \gamma) \bar{x}_r^{(i)} + \lambda \bar{x}_s^{(i)} + \alpha + \bar{\epsilon}_r^{(i)}
\]
Interpretation

- $\gamma = \text{estimated regional spillover, useful for models and aggregation}$

- Average across regions:

 $$\bar{y}^{r(i)} = (\beta + \gamma) \bar{x}^{r(i)} + \lambda \bar{x}_{s(i)}^{r(i)} + \alpha + \bar{\epsilon}^{r(i)}$$

- Total regional effect of average treatment

 $$\frac{d\bar{y}^{r(i)}}{d\bar{x}^{r(i)}} = \beta + \gamma$$

- Direct effect of average treatment, assuming zero spillovers

 $$\frac{d\bar{y}^{r(i)}}{d\bar{x}^{r(i)}} \mid (\gamma = 0) = \beta$$
Interpretation

- $\gamma = \text{estimated regional spillover, useful for models and aggregation}$

- Average across regions:

$$\bar{y}^{r(i)} = (\beta + \gamma) \bar{x}^{r(i)} + \lambda \bar{x}_{s(i)}^{r(i)} + \alpha + \bar{\epsilon}^{r(i)}$$

- *Total* regional effect of average treatment

$$\frac{d\bar{y}^{r(i)}}{d\bar{x}^{r(i)}} = \beta + \gamma$$

- *Direct* effect of average treatment, assuming zero spillovers

$$\frac{d\bar{y}^{r(i)}}{d\bar{x}^{r(i)}} \mid (\gamma = 0) = \beta$$

- More on how to calculate dollar multipliers etc. in paper.
Application: Credit Cut

- A German bank (Commerzbank) cuts lending due to international losses (Huber 2018).
- Some firms depend on this bank for credit.
Application: Credit Cut

- A German bank (Commerzbank) cuts lending due to international losses (Huber 2018).
- Some firms depend on this bank for credit.
- Treatment: Indicator for direct dependence on the bank.
- Research question: amplification or dampening through spillovers?
Credit cut by Commerzbank

Ln lending stock (relative to 2004)

All other banks
Commerzbank
All other commercial banks
Product Market Spillovers

• IO economists write theories about product markets: demand versus technology spillovers.

• Test by constructing product market leave-out mean (industry for tradable and industry-region for non-tradables).

• Estimate:

\[y_i = \beta x_i + \lambda \bar{x}_{s(i)} + \alpha + u_i \]
Negative Industry Spillover

<table>
<thead>
<tr>
<th>Coefficient on x_i</th>
<th>Coefficient on $\bar{x}_{s(i)}$</th>
<th>Coefficient on $\bar{x}_{r(i)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.030***</td>
<td>-0.030*</td>
<td></td>
</tr>
<tr>
<td>(0.007)</td>
<td>(0.018)</td>
<td></td>
</tr>
</tbody>
</table>

Sectors in sample | **All sectors**
Observations | 45,252 | 45,252
There are other potential spillovers, e.g., region. But region and industry means are uncorrelated. So no OVB?
Mechanical Bias With Multiple Spillovers

- There are other potential spillovers, e.g., region. But region and industry means are uncorrelated. So no OVB?

- No, cannot take spillover estimate at face value.

- There will be mechanical bias if a true spillover is excluded, even if uncorrelated to other spillover.
Mechanical Bias With Multiple Spillovers

- There are other potential spillovers, e.g., region. But region and industry means are uncorrelated. So no OVB?
- No, cannot take spillover estimate at face value.
- There will be mechanical bias if a true spillover is excluded, even if uncorrelated to other spillover.
- Regional spillovers operate through demand versus agglomeration spillovers.
Add Regional Spillover

<table>
<thead>
<tr>
<th></th>
<th>Coefficient on x_i</th>
<th>Coefficient on $\bar{x}_{s(i)}$</th>
<th>Coefficient on $\bar{x}_{r(i)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.030***</td>
<td>-0.030*</td>
<td>-0.114**</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.018)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>Sectors in sample</td>
<td>All sectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>45,252</td>
<td>45,252</td>
<td></td>
</tr>
</tbody>
</table>
Understanding Mechanical Bias

• True model:

\[y_i = \beta x_i + \gamma \bar{x}_{r(i)} + \lambda \bar{x}_{s(i)} + \alpha + \epsilon_i \]

• Excluded regional term correlated with direct effect, so all coefficients biased.
Understanding Mechanical Bias

• True model:

\[y_i = \beta x_i + \gamma \bar{x}_{r(i)} + \lambda \bar{x}_{s(i)} + \alpha + \epsilon_i \]

• Excluded regional term correlated with direct effect, so all coefficients biased.

• Suggestions:
 • if observed, include other spillover types
 • IV
 • heterogeneity in spillovers using theory
Heterogeneous Regional Spillover

Indirect effect on firm employment growth

- Producers of tradables
- Producers of part-tradables
- Producers of non-tradables

Low, Medium, High Innovation
Heterogeneous Regional Spillover

<table>
<thead>
<tr>
<th></th>
<th>Non-tradable and high R&D</th>
<th>Tradable and low R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14,810</td>
<td>30,442</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Non-tradable and high R&D</th>
<th>Tradable and low R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14,810</td>
<td>30,442</td>
</tr>
</tbody>
</table>

Notes:

-0.031**

(0.013)

-0.045

(0.031)

-0.213***

(0.077)

-0.026***

(0.009)

-0.007

(0.024)

-0.067

(0.055)
Mechanical Bias due to Mismeasurement

- Incorrectly specified regressors generate mechanical bias:
 - direct effect is nonlinear, but direct treatment is measured using linear regressor
 - measurement error in direct treatment

- For exposition, introduce measurement error in direct treatment
Mechanical Bias due to Mismeasurement

- Incorrectly specified regressors generate mechanical bias:
 - direct effect is nonlinear, but direct treatment is measured using linear regressor
 - measurement error in direct treatment

- For exposition, introduce measurement error in direct treatment

Measurement Error

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient on x_i^*</td>
<td>-0.027***</td>
<td>-0.023***</td>
<td>-0.024***</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Coefficient on $x_{r(i)}^*$</td>
<td>-0.123**</td>
<td>-0.155***</td>
<td>-0.160***</td>
<td>-0.256***</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.054)</td>
<td>(0.058)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>Measurement error Sectors in sample</td>
<td>None</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Observations</td>
<td>45,252</td>
<td>45,252</td>
<td>45,252</td>
<td>45,252</td>
</tr>
</tbody>
</table>
Understanding Mechanical Bias

- Individual measurement error gets averaged away in leave-out mean.

- Less error in leave-out mean than in direct effect.
Understanding Mechanical Bias

- Individual measurement error gets averaged away in leave-out mean.
- Less error in leave-out mean than in direct effect.
- True direct effect erroneously loads onto spillover coefficient.
- Analytical derivation for biases in paper.
<table>
<thead>
<tr>
<th></th>
<th>High Non-tradable and high R&D</th>
<th>High Tradable and low R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_{1}</td>
<td>-0.021** (0.010)</td>
<td>-0.004 (0.007)</td>
</tr>
<tr>
<td>b_{2}</td>
<td>-0.346*** (0.128)</td>
<td>-0.214** (0.094)</td>
</tr>
<tr>
<td>Sample Size</td>
<td>14,810</td>
<td>30,442</td>
</tr>
</tbody>
</table>
Mismeasurement Solutions

• Suggestions:
 • heterogeneity in spillover
 • IV
Mismeasurement Solutions

• Suggestions:
 • heterogeneity in spillover
 • IV

• Same intuition for nonlinear effect, very relevant for finance, e.g., borrowing and liquidity constraints.
• Show how to interpret spillover estimates.

• Bank debt: Direct effect = 0.47 mio decline at average firm.

• Employment: Total effect = 10 jobs.
Policy Multiplier

- Show how to interpret spillover estimates.

- Bank debt: Direct effect = 0.47 mio decline at average firm.

- Employment: Total effect = 10 jobs.

- Undo direct effect at 0.47 mio per firm, get 10 jobs in region.

- Provide 100k USD in debt, get 1.4 jobs.
 - Know only direct effect: would estimate 0.4 jobs.
 - Know only region effect: don’t know how to target direct firms.
Recommendations

• 1. Define spillovers of interest and exogenous variation.

• 2. Attempt to measure other omitted spillover types.

• 3. Try flexible functional forms to overcome bias from nonlinearity.

• 4. IV solves all forms of mechanical bias.

• 5. Identify theoretical mechanisms driving spillovers.
 regional: demand and agglomeration effects
 sectoral: competition and productivity
 cross region: trade, migration, capital mobility, and aggregate policy

• 6. Estimate heterogeneous spillovers as suggested by theory.
Recommendations

• 1. Define spillovers of interest and exogenous variation.

• 2. Attempt to measure other omitted spillover types.
Recommendations

1. Define spillovers of interest and exogenous variation.

2. Attempt to measure other omitted spillover types.

3. Try flexible functional forms to overcome bias from nonlinearity.

4. IV solves all forms of mechanical bias.

5. Identify theoretical mechanisms driving spillovers.
 - regional: demand and agglomeration effects
 - sectoral: competition and productivity
 - cross region: trade, migration, capital mobility, and aggregate policy

6. Estimate heterogeneous spillovers as suggested by theory.
Recommendations

• 1. Define spillovers of interest and exogenous variation.

• 2. Attempt to measure other omitted spillover types.

• 3. Try flexible functional forms to overcome bias from nonlinearity.

• 4. IV solves all forms of mechanical bias.

• 5. Identify theoretical mechanisms driving spillovers.
 - regional: demand and agglomeration effects
 - sectoral: competition and productivity
 - cross region: trade, migration, capital mobility, and aggregate policy

• 6. Estimate heterogeneous spillovers as suggested by theory.
Recommendations

• 1. Define spillovers of interest and exogenous variation.

• 2. Attempt to measure other omitted spillover types.

• 3. Try flexible functional forms to overcome bias from nonlinearity.

• 4. IV solves all forms of mechanical bias.

• 5. Identify theoretical mechanisms driving spillovers.
 • regional: demand and agglomeration effects
 • sectoral: competition and productivity
 • cross region: trade, migration, capital mobility, and aggregate policy
Recommendations

1. Define spillovers of interest and exogenous variation.
2. Attempt to measure other omitted spillover types.
3. Try flexible functional forms to overcome bias from nonlinearity.
4. IV solves all forms of mechanical bias.
5. Identify theoretical mechanisms driving spillovers.
 - regional: demand and agglomeration effects
 - sectoral: competition and productivity
 - cross region: trade, migration, capital mobility, and aggregate policy
6. Estimate heterogeneous spillovers as suggested by theory
Conclusion

• Macro shocks affect firms/households through many complex GE spillover channels.

• Need to know GE channels for modeling and policy → estimating spillovers is potentially powerful.

• More potential applications sketched in paper, ranging from sectoral, labor market, and country-level spillovers.

• Most challenging: estimating country spillovers requires exogenous country variation.
 • fiscal spending due to wars (Ramey 2019)
 • foreign policy (Jiménez et al. 2012)
 • political upheavals (Fuchs-Schündeln 2008)
 • idiosyncratic policy (Romer and Romer 2004)